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The cross section for the scattering of conduction electrons in a metal by the lattice oscillations is written 
in terms of the observed slow-neutron inelastic-scattering cross section. This enables one to include all multi-
phonon processes, Debye-Waller factors, and umklapp processes in the electron-lattice interaction without 
having to use a phonon description of the lattice oscillations. Expressions which involve only the effective 
electron-lattice matrix elements and the observed neutron-scattering data are given for the electron self 
energy, phonon-induced effective mass, electrical and thermal conductivities, and viscosity. 

SOLID-STATE physicists have expended an enor
mous amount of labor over the years calculating the 

consequences of electron-phonon interactions in real 
metals. They have labored similarly extracting informa
tion on the one-phonon spectrum from slow neutron 
scattering data. It is the purpose of this paper to show 
how one can pass directly from essentially unanalyzed 
neutron scattering data to a calculation of those metallic 
properties that are influenced by the interaction of the 
electrons with lattice oscillations. The method pro
posed permits one to take into account all multiphonon 
processes, Debye-Waller factors, umklapp processes, 
couplings to transverse phonons and anharmonic 
phonon effects, without ever having to go through an 
intermediate description of the lattice oscillations in 
terms of phonons.1 

The inelastic scattering of a slow neutron from a metal 
is a process really very similar to the inelastic scattering 
of a conduction electron from the lattice oscillations. 
Both couple, not to individual phonons, but to the ion 
density; and for both a Born approximation is valid. 

In the pseudopotential approximation, the scattering 
cross section for a process in which the neutron loses 
momentum k and energy co is, aside from trivial factors, 
the number S(k,o)) of available vibrational states of the 
lattice with momentum k and energy co. In terms of 
p(k,/), the Fourier transform of the operator p(r,t) for 
the density of nuclei, S is given by 

5(k 
J —c 

dfe'"'<P(k,0pt(k,O)> (i) 

where the expectation value is in the equilibrium en
semble for the metal. 

Conduction electrons in Bloch states, in a metal with 
rigid ion cores, are scattered via a screened potential by 
the fluctuations of ion density. As was pointed out by 

1 L. J. Sham and J. M. Ziman in Solid State Physics, edited by 
F. Seitz and D. Turnbull (Academic Press Inc., New York, 
1963), Vol. 15, review the previous work that went beyond the 
simple one-phonon picture of the interaction of electrons with the 
lattice. They also review the attempts that have been made to 
view the electron-lattice interaction as a diffraction problem. 
Attention is also called to the work of I. Mannari [Progr. Theoret. 
Phys. (Kyoto) 26, 51 (1961)] on electrical conductivity, in which 
he points out that the scattering cross section for conduction elec
trons is connected with the time-dependent pair correlation func
tion of the ions. 

Migdal,2'3 this scattering in the normal metal is correctly 
described, to lowest order in (m/M)1/2, by the Born ap
proximation. The scattering probability is thus propor
tional to the number S'QtLja) of available (fully inter
acting) states for density fluctuations. This number is 
just 61 with the elastic Bragg peaks subtracted out: 

5 ,(k,co)==5(k,a>)-27r5(co) |(p(k)}|2 . (2) 

Consider first the electron-lattice collision term in the 
Boltzmann equation for the electronic distribution 
function. In a collision an electron in Bloch state p 
with energy e scatters to a state p' with energy ef by 
creating a density fluctuation with momentum k and 
energy co. (For co<0 this is effectively an absorption 
process.) Let the matrix element of the screened poten
tial be (p'|z;(k,co)|p) for this process. Then the rate at 
which the scattering occurs is given by the golden rule 
as 

27r5(e- e'-co)/(p) (l-/(p'))2VS'(k,co) | <p' \v(k,a>) I P> 12, 
(3) 

where /(p) is the density of electrons in the Bloch state 
p, 1—/(p) is the density of available final states p', 
and N is the number of ions per unit volume. The entire 
collision term is 

/d/(p)\ r 
( ) = £ / dco8(e-e'-a>)N\(V'\v(k,a>)\V)\* 
\ dt /Coll P'k./-oo 
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(4) 

The identification of S' with the experimentally ob
served equilibrium density of states for lattice fluctua
tions assumes that phonon equilibration rates are 
much more rapid than electron-phonon scattering rates. 
At temperature T(=l/Kp) the equilibrium S' obeys 
the detailed balancing condition 

y ( -k , -o>) = 6r /»-5 / (M. (5) 
2 A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958) 

[English transL: Soviet Phys.—JETP 34, 996 (1958)]; A. A. 
Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski, Methods of 
Quantum Field Theory in Statistical Physics (Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 1963), Chap. IV. 

3 R. E. Prange and L. P. Kadanoff, Phys. Rev. 134, A566 (1964). 
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In the "one-phonon approximation" 

S'(k,c*) = —Z (k.ekx)2<5(co2-cokx
2) , (6) 

M x l-e-P" 

where ek \ is the polarization vector of a phonon with 
polarization index X; on substituting (6) into (4) one 
recovers the ordinary Boltzmann equation collision 
term. 

To give the reader a feeling for how the transport 
coefficients depend on S', we give the results of the most 
elementary variational calculations with the Boltz
mann equation in which we linearize the collision 
term, assume free electrons with an effective mass4 m, 
take the matrix element to depend only on k: 

KPXMIP^^K^IV.P-* (7) 
and use the simplest trial functions.5 

The electrical conductivity is given by ae=ne2re/m 
where 

m r2pf r00 d<a 
Te~

l = / Wdk \v(k)\2 S'(k,0>)pOM(tt) . (8) 
12TTZZJ0 7-00 2X 

Z is the number of conduction electrons per ion and n(co) 
= (eP"— l )"1 . Eq. (8) is a generalization of the Griin-
eisen formula5 for the conductivity in that included in 
S' are multiphonon processes, Debye-Waller factors, 
umklapp processes, etc. Substituting (6) into (8) gives 
the usual Griineisen formula. Eq. (8) has been derived 
by Mannari1 for the special case of a liquid metal. 

Only for temperatures much greater than dz>, the 
Debye temperature, is re strictly interpretable as a 
relaxation time. In this limit, (3oon(a)) —> 1, so that the 
co integral becomes S'(k), the static structure factor 
(minus the Bragg peaks at reciprocal lattice vectors). 
Thus, we see that the recent use of the resultant formula 
by Ziman and co-workers in the study of liquid metals6 

has, in fact, included all multiphonon processes. The 
temperature dependence of the high-temperature con
ductivity is determined only by the temperature de
pendence of S'(k). 

We find for the electron viscosity t] = 2nefTv/5, where 

m r2pf 
- ^ / dk(3k*-3k5/4pf

2)\v(k)\2 

'Jo 
r00 do) 

X —S'(k,oS)pom(o>). (9) 
J _oo ̂ T 

\2TTH . 

In general, rv differs from re, the integration giving more 
weight to k/pf< (8/3)1/2 than re and less to the region 

4 This effective mass m should not include effects of electron-
phonon interactions. See Ref. 3. 

5 J. M. Ziman, Electrons and Phonons (Oxford University 
Press, New York, 1963), Chap. IX, details the elementary varia
tional calculations of electronic transport coefficients from the 
Boltzmann equation. 

6 Reviewed in Sham and Ziman, Ref. 1. 

(8/3yt2<k/pf<2. This can well lead to differences in 
the temperature dependence of re and rv. 

The thermal conductivity becomes crt=CvV/2Tt/3) 

where 

m r2p/ r do) 
dk\v(k)\2 —S'{k,o>)PoM{o>) 

\2<n*zJ<> 7_oo27r 

ftp/ /•« 
/ dk\v(k)\2 

J0 J -c 

[V+(—)*(3^-*V2)]. (10) 

so For T^>dBy the (ffco)2 term is negligible; rt—> 
that the Wiedemann-Franz law obtains. 

The method of describing the electron-lattice inter
action in terms of S' is not limited to the Boltzmann 
equation. The entire perturbation expansion for the 
electron-phonon interaction, commonly written in 
terms of D(k,z), the phonon Green's function, is more 
correctly written with k-D(k,z) k replaced by 

/ 

<fo>S'(k,co) 

2TT Z—oo 
( l -er />«). 

For example, the phonon contribution to the effective 
electron-electron interaction is 

Vett=l £ W"\v(kJz)\V)(p>'\v(-k-z)\V') 

X 
/ 

duS'(k,a) 

2w z—co 
( I - ^ V ' V V ^ P , (ii) 

where z is the energy transfer in the interaction. 
Following the procedure due to Migdal,2 we can write 

the electron self energy in terms of S' as 

2(P , 
r dk dk do> l + » ( w ) - / 0 ( e ) S'(kw) 

de 
(2X)32TT z-e-u l+»(w) 

X £ | < P ' K k ) | P > l 2 S ( e ' - € / ) . (12) 
P' 

Then, using (7), we find as the phonon contribution to 
the electron effective mass at T<^6D : 

in* mN 
—=1+ 
m 2ir2p 

r2pf r ° daS'(koo) 
I kdk\v(k)\2 / . (13) 
'o J-oo 2w co 

At high temperatures m* approaches m. 
To sum up, we see that the only quantity that re

mains to be calculated theoretically is the effective 
matrix element (p / |?;(k)|p), since 6*(k,co) is directly 
obtained from neutron scattering experiments. There 
do not exist, at present, sufficiently detailed maps of 
5(k,co), for a simple metal like lead or aluminum at a 
representative number of points in k space, to carry out 
detailed evaluations of the formulas given here. 
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